

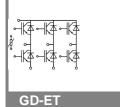
SEMITOP[®] 3

IGBT Module

SK20GD065ET

Preliminary Data

Features


- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Ultrafast NPT technology IGBT
- CAL technology FWD
- Integrated NTC temperature sensor

Typical Applications*

Inverter

Absolute Maximum Ratings $T_s = 25 \text{ °C}$, unless otherwise specified					
Symbol	Conditions		Values	Units	
IGBT					
V _{CES}	T _j = 25 °C		600	V	
I _C	T _j = 125 °C	T _s = 25 °C	26	Α	
		T _s = 80 °C	18	А	
I _{CRM}	I _{CRM} = 2 x I _{Cnom}		40	А	
V _{GES}			± 20	V	
t _{psc}	V_{CC} = 300 V; $V_{GE} \le 20$ V; VCES < 600 V	T _j = 125 °C	10	μs	
Inverse D	Diode			•	
I _F	T _j = 150 °C	T _s = 25 °C	27	А	
		T _s = 80 °C	19	А	
I _{FRM}	I _{FRM} = 2 x I _{Fnom}		50	А	
Module					
I _{t(RMS)}				А	
T _{vj}			-40 +150	°C	
T _{stg}			-40 +125	°C	
V _{isol}	AC, 1 min.		2500	V	

Characteristics T _s =			25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units	
IGBT							
V _{GE(th)}	$V_{GE} = V_{CE}, I_C = 0.5 \text{ mA}$		3	4	5	V	
I _{CES}	V_{GE} = 0 V, V_{CE} = V_{CES}	T _j = 25 °C			0,07	mA	
		T _j = 125 °C				mA	
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			120	nA	
		T _j = 125 °C				nA	
V _{CE0}		T _j = 25 °C		1,2	1,3	V	
		T _j = 125 °C		1,1	0,9	V	
r _{CE}	V _{GE} = 15 V	T _j = 25°C		40	60	mΩ	
		T _j = 125°C		55		mΩ	
V _{CE(sat)}	I _{Cnom} = 15 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		2	2,5	V	
		T _j = 125°C _{chiplev.}		2,2		V	
C _{ies}				1,1		nF	
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz		0,107		nF	
C _{res}				0,063		nF	
t _{d(on)}						ns	
t, F	R _{Gon} = 50 Ω	$V_{\rm CC} = 300V$		0.0		ns	
E _{on}	D = 50 O	I _C = 20A		0,6		mJ	
t _{d(off)}	R_{Goff} = 50 Ω	$T_j = 125 °C$				ns	
t _f		V _{GE} =±15V		0.44		ns	
E _{off}				0,44		mJ	
R _{th(j-s)}	per IGBT				1,7	K/W	

SEMITOP[®] 3

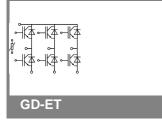
IGBT Module

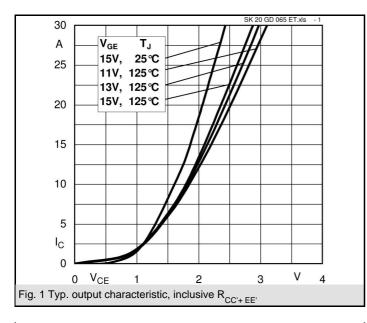
SK20GD065ET

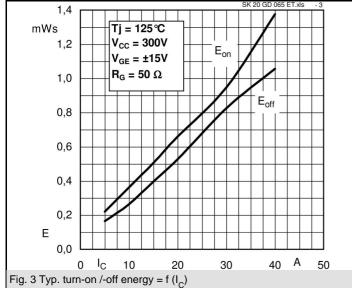
Preliminary Data

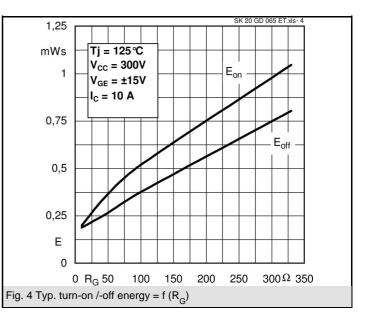
Features

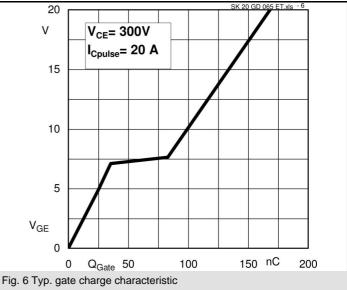
- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Ultrafast NPT technology IGBT
- CAL technology FWD
- Integrated NTC temperature sensor

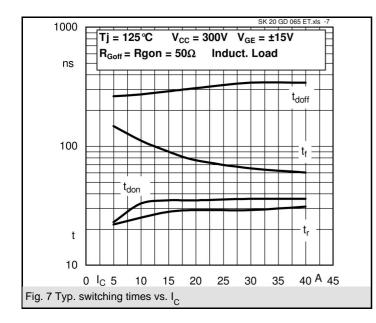

Typical Applications*

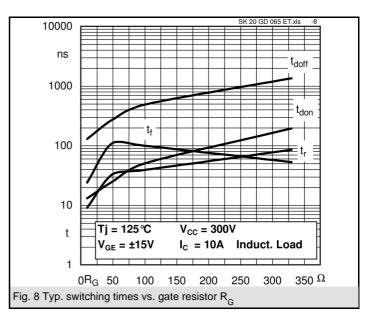

Inverter

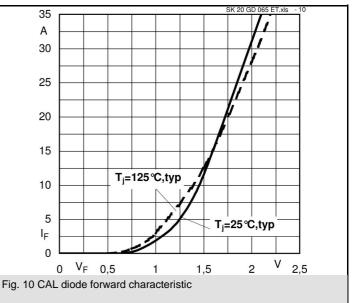

Characte	ristics					
Symbol	Conditions		min.	typ.	max.	Units
Inverse D	Diode					
$V_F = V_{EC}$	I_{Fnom} = 20 A; V_{GE} = 0 V	T _j = 25 °C _{chiplev.}		1,6		V
		T _j = 125 °C _{chiplev.}		1,6		V
V _{F0}		T _j = 25 °C		1		V
		T _j = 125 °C		0,9		V
r _F		T _j = 25 °C				mΩ
		T _j = 125 °C		52		mΩ
I _{RRM}	I _F = A	T _j = 125 °C				А
Q _{rr}						μC
E _{rr}	V _{CC} = 300V					mJ
$R_{th(j-s)D}$	per diode				1,9	K/W
M _s	to heat sink		2,25		2,5	Nm
w				30		g
Tempera	ture sensor					
R ₁₀₀	T _s =100°C (R ₂₅ =5kΩ)			493±5%		Ω

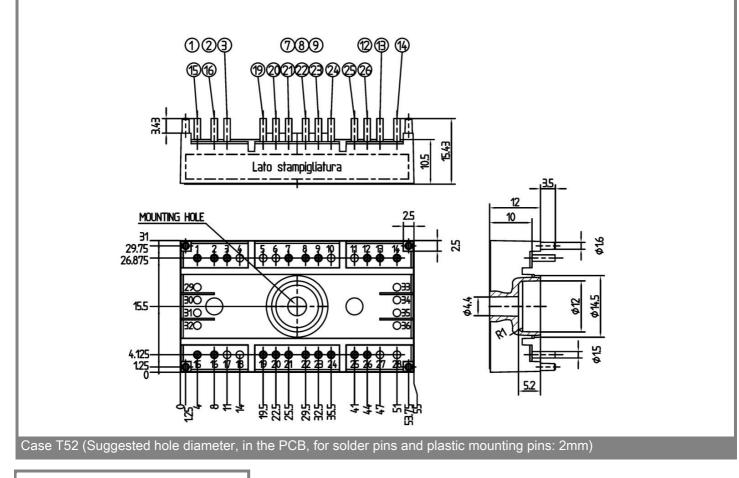

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

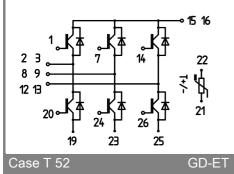

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.











UL recognized file

no. E 63 532

