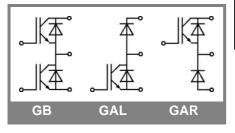


IGBT Module

SK50GB067 SK50GAL067 SK50GAR067


Target Data

Features

- Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Hyperfast NPT technology IGBT
- N-channel homogeneous silicon structure (NPT Non-Punch-Through IGBT)
- Positive V_{ce,sat} temperature coefficient (Easy paralleling)
- Low tail current with low temperature dependence
- · Low treshold voltage

Typical Applications*

- Switching (not for linear use)
- High Frequencies Applications
- Welding generator
- Switched mode power supplies
- UPS

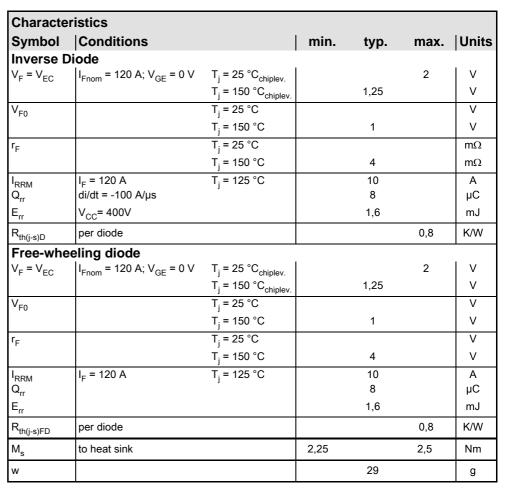
Absolute	Maximum Ratings	$T_s = 25 ^{\circ}C$, unless otherwise	s = 25 °C, unless otherwise specified			
Symbol	Conditions		Values	Units		
IGBT	'					
V_{CES}	$T_j = 25 ^{\circ}\text{C}$ $T_i = 125 ^{\circ}\text{C}$		600	V		
I _C	T _j = 125 °C	T _s = 25 °C	83	А		
		T_s = 80 °C	54	Α		
I _{CRM}	I _{CRM} = 2 x I _{Cnom}		240	А		
V_{GES}			± 20	V		
t _{psc}	V_{CC} = 300 V; $V_{GE} \le 20$ V; $V_{CES} < 600$ V	T _j = 125 °C	10	μs		
Inverse I	Diode		•			
I _F	T _j = 150 °C	$T_s = 25 ^{\circ}C$	90	Α		
		T _s = 80 °C	56	Α		
I _{FRM}	I _{FRM} = 2 x I _{Fnom}			Α		
I _{FSM}	t _p = 10 ms; sinusoidal	$T_j = ^{\circ}C$	360	А		
Freewhe	eling Diode					
I _F	T _j = 150 °C	T_s = 25 °C	90	Α		
		$T_s = 80 ^{\circ}C$	56	Α		
I _{FRM}				Α		
I _{FSM}	t _p = ms;	$T_j = ^{\circ}C$	360	А		
Module						
I _{t(RMS)}				Α		
T_{vj}			-40 + 150	°C		
T _{stg}			-40 +125	°C		
V _{isol}	AC, 1 min.		2500	V		

Characteristics T _s = 25 °C, unless otherwise spec						ecified
Symbol	Conditions		min.	typ.	max.	Units
IGBT	•					•
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 1.2 \text{ mA}$		3	4	5	V
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	T _j = 25 °C			0,008	mA
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			480	nA
V _{CE0}		T _j = 150 °C			2	V
r _{CE}	V _{GE} = 15 V	T _j = 150°C		12,5		mΩ
V _{CE(sat)}	I _{Cnom} = 120 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		2,8	3,15	V
		T _j = 125°C _{chiplev} .		3,5	4	V
C _{ies}				6		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,6		nF
C _{res}				0,36		nF
t _{d(on)}				38		ns
t _r	$R_{Gon} = 0 \Omega$	V _{CC} = 400V		31		ns
E _{on}		I _C = 120A		7,5		mJ
t _{d(off)}	R_{Goff} = 11 Ω	T _i = 125 °C		260		ns
t _f		V _{GE} =±15V		30		ns
E _{off}				2,5		mJ
R _{th(j-s)}	per IGBT				0,45	K/W

SEMITOP® 3

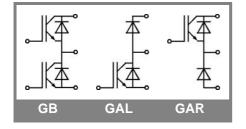
IGBT Module

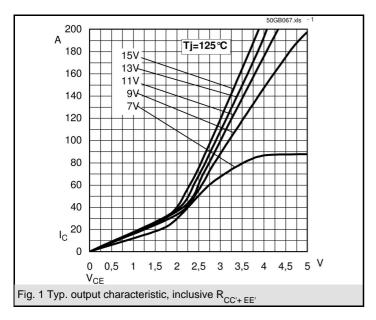
SK50GB067 **SK50GAL067 SK50GAR067**

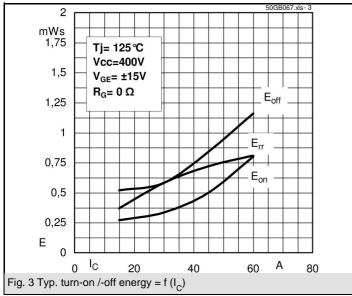

Target Data

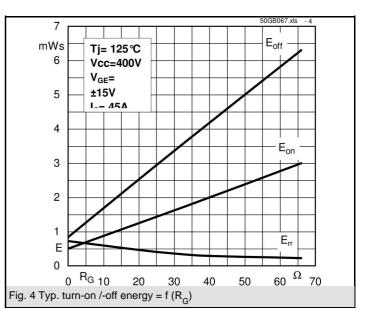
Features

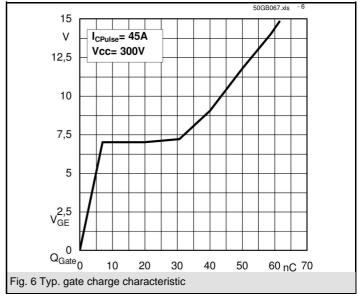
- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Hyperfast NPT technology IGBT
- N-channel homogeneous silicon structure (NPT Non-Punch-Through IGBT)
- Positive V_{ce,sat} temperature coefficient (Easy paralleling)
- Low tail current with low temperature dependence
- · Low treshold voltage

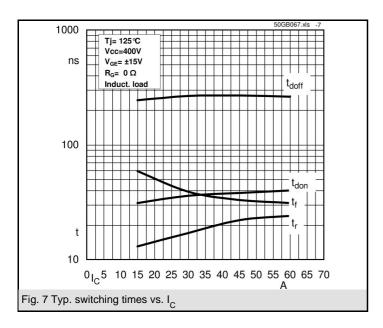

Typical Applications*

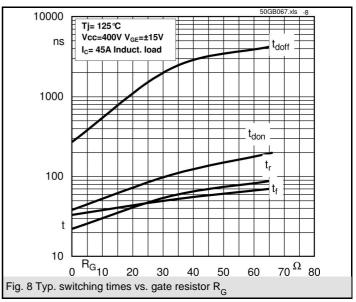

- Switching (not for linear use)
- **High Frequencies Applications**
- Welding generator
- Switched mode power supplies
- **UPS**

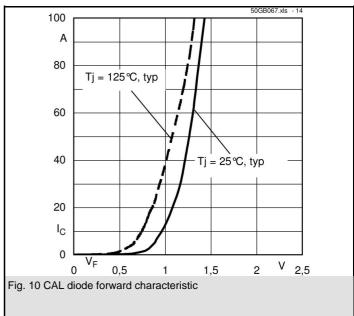


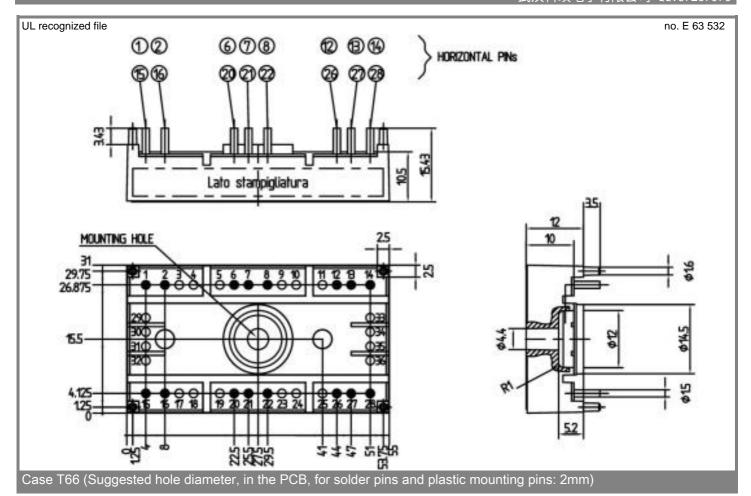

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

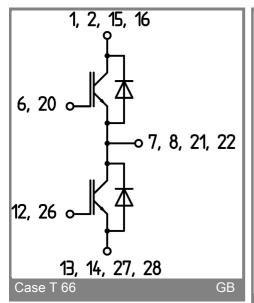

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

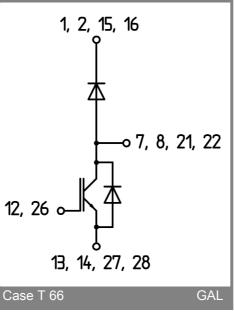


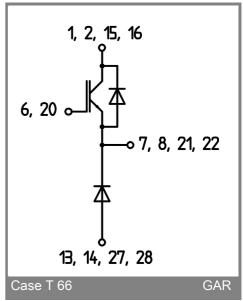












4 17-04-2008 DIL © by SEMIKRON

5 17-04-2008 DIL © by SEMIKRON