

IGBT module

SK50GH128T

Target Data

Features

- One screw mounting module
- Fully compatible with SEMITOP®1,2,3
- Improved thermal performances by aluminium oxide substrate
- SPT IGBT Technology
- CAL technology FWD
- Integrated NTC Temperature sensor

Typical Applications*

Voltage regulator

Absolute	Absolute Maximum Ratings T _c = 25 °C, unless otherwise specified					
Symbol	Conditions		Values	Units		
IGBT						
V_{CES}	T _j = 25 °C		1200	V		
I _C	$T_j = 125 ^{\circ}\text{C}$ $T_s = 125 ^{\circ}\text{C}$	= 25 °C	70	Α		
	T _s =	= 70 °C	50	Α		
I _{CRM}	I_{CRM} = 2 x I_{Cnom} , $t_p \le 1 ms$		100	Α		
V_{GES}			20	V		
t _{psc}	V_{CC} = 600 V; $V_{GE} \le 20$ V; T_j = VCES < 1200 V	125 °C	10	μs		
Inverse D	Diode					
I _F	,	= 25 °C	67	Α		
	T _s =	= 70 °C	50	Α		
I_{FRM}	I_{FRM} = 2 x I_{Fnom} , $t_p \le 1 ms$		150	Α		
I _{FSM}	$t_p = 10 \text{ ms}$; half sine wave $T_j =$	125 °C	550	Α		
Module						
$I_{t(RMS)}$				Α		
T_{vj}			-40 + 150	°C		
T _{stg}		·	-40 + 125	°C		
V _{isol}	AC, 1 min.		2500	V		

Characteristics $T_c =$		25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 2 \text{ mA}$		4,5	5,5	6,5	V
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	T _j = 25 °C			0,1	mA
		T _j = 125 °C		0,2		mA
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 125 °C			200	nA
V _{CE0}		T _j = 25 °C		1,1	1,3	V
		T _j = 125 °C		1	1,2	V
r_{CE}	V _{GE} = 15 V	T _j = 25°C		12		mΩ
		T _j = 125°C		22		mΩ
V _{CE(sat)}	I _{Cnom} = 50 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		1,9	2,3	V
		$T_j = 125^{\circ}C_{chiplev}$		2,1		V
C _{ies}				4,5		nF
C _{oes}	$V_{CE} = , V_{GE} = V$	f = MHz		0,33		nF
C _{res}				0,21		nF
t _{d(on)}						ns
t _r	$R_{Gon} = 15 \Omega$	V _{CC} = 600V		6		ns
E _{on}	$R_{Goff} = 15 \Omega$	I _C = 50A T _i = 125 °C		O		mJ ns
${f t}_{ m d(off)} \ {f t}_{ m f}$	Goff 10 32	1, 120 0				ns
E _{off}				4,6		mJ
R _{th(j-s)}	per IGBT	•		0,51		K/W

IGBT module

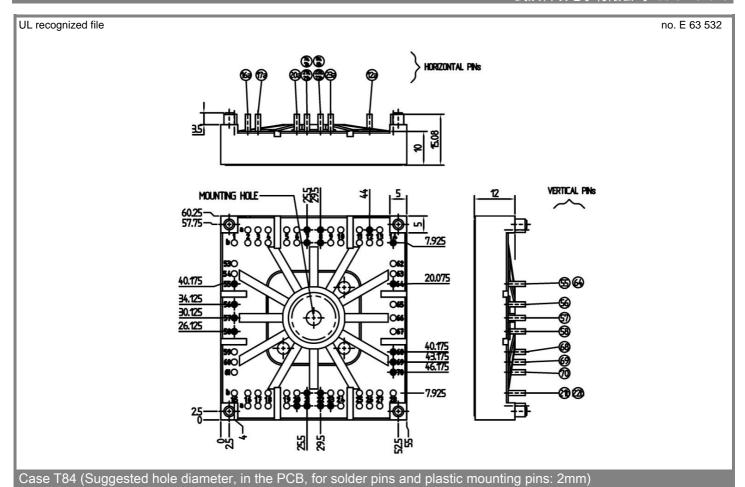
SK50GH128T

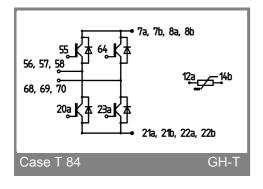
Target Data

Features

- · One screw mounting module
- Fully compatible with SEMITOP®1,2,3
- Improved thermal performances by aluminium oxide substrate
- SPT IGBT Technology
- CAL technology FWD
- Integrated NTC Temperature sensor

Typical Applications*


Voltage regulator


Characteristics							
Symbol	Conditions	1	min.	typ.	max.	Units	
Inverse Diode							
$V_F = V_{EC}$	I_{Fnom} = 50 A; V_{GE} = 0 V	$T_j = 25 ^{\circ}C_{\text{chiplev.}}$ $T_j = 125 ^{\circ}C_{\text{chiplev.}}$		2 1,8		V	
V _{F0}		T _j = 125 °C		1	1,2	V	
r _F		T _j = 125 °C		16	22	mΩ	
I _{RRM} Q _{rr}	I _F = 50 A	T _j = 125 °C				A µC	
E _{rr}	V _{CC} =600V			4		mJ	
R _{th(j-s)D}	per diode			0,7		K/W	
Freewhee	Freewheeling Diode						
$V_F = V_{EC}$	$I_{Fnom} = A; V_{GE} = V$	$T_j = {^{\circ}C_{chiplev.}}$				V	
V_{F0}		T _j = °C				V	
r _F		$T_j = ^{\circ}C$ $T_j = ^{\circ}C$				V	
I _{RRM} Q _{rr} E _{rr}	I _F = A	T _j = °C				Α μC mJ	
	per diode					K/W	
M _s	to heat sink		2,5		2,75	Nm	
w				60		g	
Temperat	Temperature sensor						
R ₁₀₀	$T_s = 100^{\circ}C (R_{25} = 5k\Omega)$			493±5%		Ω	

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

3 12-12-2007 DIL © by SEMIKRON