

SEMITRANS[®] 3

Trench IGBT Modules

SKM 300GB066D

Features

- Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_C

Typical Applications*

- AC inverter drives
- UPS
- Electronic welders

Remarks

- Case temperature limited to $T_c = 125^{\circ}C$ max, recommended $T_{op} = -40 \dots +150^{\circ}C$
- Product reliability results are valid for $T_i \leq 150^{\circ}C$
- Short circuit data: $t_p \le 6\mu$ s; $V_{GE} \le 15V$; $T_j = 150^{\circ}$ C; $V_{cc} \le 360V$, use of soft R_G necessary !
- Take care of over-voltage caused by stray inductances

Absolute Maximum Ratings T _{case} =			25°C, unless otherwise specified		
Symbol	Conditions		Values	Units	
IGBT					
V _{CES}	T _j = 25 °C		600	V	
I _C	T _j = 175 °C	T _c = 25 °C	390	А	
		T _c = 80 °C	300	Α	
I _{CRM}	I _{CRM} =2xI _{Cnom}		600	А	
V _{GES}			± 20	V	
t _{psc}	V_{CC} = 360 V; $V_{GE} \le 15$ V; VCES < 600 V	T _j = 150 °C	6	μs	
Inverse	Diode				
I _F	T _j = 175 °C	T _c = 25 °C	350	А	
		T _c = 80 °C	250	Α	
I _{FRM}	I _{FRM} =2xI _{Fnom}		600	А	
I _{FSM}	t _p = 10 ms; sin.	T _j = 175 °C	1760	А	
Module					
I _{t(RMS)}			500	А	
T _{vj}			- 40 + 175	°C	
T _{stg}			- 40 + 125	°C	
V _{isol}	AC, 1 min.		4000	V	

Characteristics T _{case} =		25°C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
V _{GE(th)}	$V_{GE} = V_{CE}, I_C = 4.8 \text{ mA}$		5	5,8	6,5	V
I _{CES}	V_{GE} = 0 V, V_{CE} = V_{CES}	T _j = 25 °C		0,15	0,45	mA
V _{CE0}		T _j = 25 °C		0,9	1	V
		T _j = 150 °C		0,85	0,9	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		1,8	3	mΩ
		T _j = 150°C		2,7	3,8	mΩ
V _{CE(sat)}	I _{Cnom} = 300 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		1,45	1,9	V
		T _j = 150°C _{chiplev.}		1,7	2,1	V
C _{ies}				18,5		nF
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz		1,2		nF
C _{res}				0,55		nF
Q_{G}	V _{GE} = -8V+15V			2400		nC
R _{Gint}	T _j = °C			1		Ω
t _{d(on)}				150		ns
t,	R_{Gon} = 2,4 Ω	V _{CC} = 300V		48		ns
E _{on}	D = 24.0	I _C = 300A		7,5		mJ
t _{d(off)} t	R_{Goff} = 2,4 Ω	T _j = 150 °C V _{GF} = -8V/+15V		540 53		ns ns
t _f E _{off}		GE		11,5		mJ
	per IGBT			,0	0,15	K/W
R _{th(j-c)}					0,15	17/11

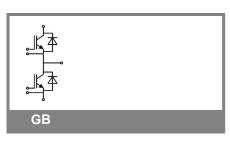
SEMITRANS[®] 3

Trench IGBT Modules

SKM 300GB066D

Characte	ristics					
Symbol	Conditions		min.	typ.	max.	Units
Inverse D	Diode					
$V_F = V_{EC}$	I_{Fnom} = 300 A; V_{GE} = 0 V	$T_j = 25 \ ^{\circ}C_{chiplev.}$		1,4	1,6	V
V _{F0}		T _j = 25 °C		0,95	1	V
r _F		T _j = 25 °C		1,5	2	mΩ
I _{RRM} Q _{rr}	I _F = 300 A di/dt = 7000 A/μs	T _j = 150 °C		340 47		A µC
E _{rr}	V_{GE} = -8 V; V_{CC} = 300 V			10,5		mJ
R _{th(j-c)D}	per diode				0,25	K/W
Module						
L_{CE}				15	20	nH
R _{CC'+EE'}	res., terminal-chip	T _{case} = 25 °C		0,35		mΩ
		T _{case} = 125 °C		0,5		mΩ
R _{th(c-s)}	per module				0,038	K/W
M _s	to heat sink M6		3		5	Nm
M _t	to terminals M6		2,5		5	Nm
w					325	g

Features


- Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_C

Typical Applications*

- AC inverter drives
- UPS
- Electronic welders

Remarks

- Case temperature limited to $T_c = 125^{\circ}C$ max, recommended $T_{op} = -40 \dots +150^{\circ}C$
- Product reliability results are valid for $T_i \leq \! 150^\circ C$
- Short circuit data: $t_p \le 6\mu$ s; $V_{GE} \le 15V$; $T_j = 150^{\circ}$ C; $V_{cc} \le 360V$, use of soft R_G necessary !
- Take care of over-voltage caused by stray inductances

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

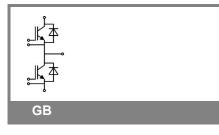
* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

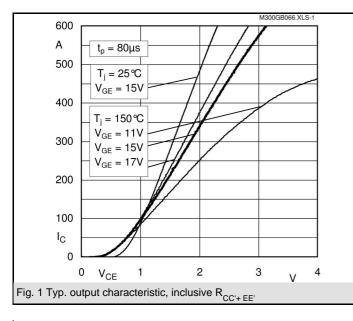
7

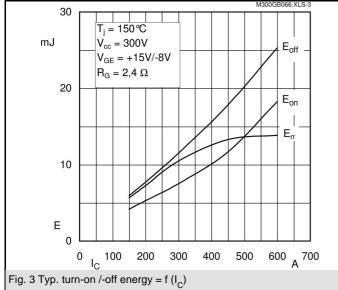
C All	[∠] th			
	Symbol	Conditions	Values	Units
	Ζ.,			·
	Z Rith(j-c)I	i = 1	107	mk/W
and and a	R _i	i = 2	30	mk/W
all the start	R _i	i = 3	11,6	mk/W
Carl State and	R _i	i = 4	1,4	mk/W
and stand	tau _i	i = 1	0,054	s
	tau _i	i = 2	0,0144	s
	tau _i	i = 3	0,0007	s
SEMITRANS [®] 3	tau _i	i = 4	0,0004	s
	Z _{th} (i a)D			
	Z Rith(j-c)D	i = 1	140	mk/W
Trench IGBT Modules	R _i	i = 2	82	mk/W
	R _i	i = 3	23,5	mk/W
	R _i	i = 4	4,5	mk/W
SKM 200CB066D	tau _i	i = 1	0,054	s
SKM 300GB066D	tau _i	i = 2	0,01	s
	tau _i	i = 3	0,0015	S
	tau _i	i = 4	0,0002	s

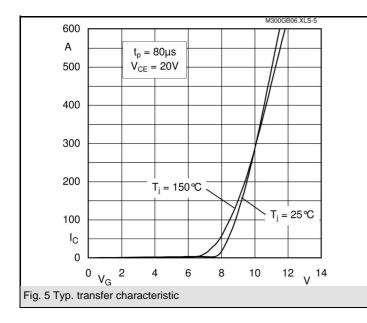
Features

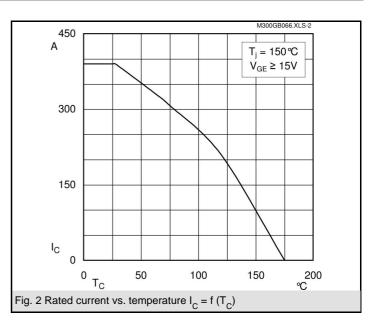
Homogeneous Si


- Trench = Trenchgate technology
- $V_{CE(sat)}$ with positive temperature coefficient
- High short circuit capability, self limiting to $6 \times I_{C}$

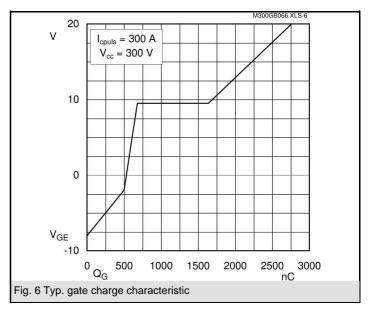

Typical Applications*

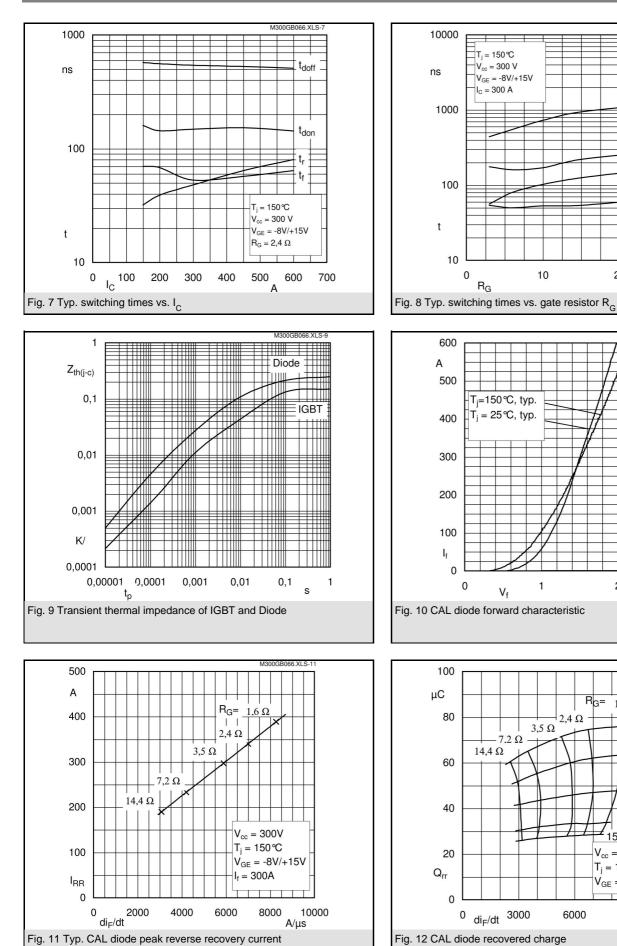

- AC inverter drives
- UPS
- Electronic welders .


Remarks


- Case temperature limited to T_c = 125°C max, recommended T_{op} = -40 ... +150°C
- Product reliability results are valid for T_i ≤150°C
- Short circuit data: $t_p \le 6\mu$ s; $V_{GE} \le 15V$; $T_j = 150^{\circ}$ C; $V_{cc} \le 360V$, use of soft R_G necessary !
- Take care of over-voltage caused by stray inductances







9000 A/µs 12000

t_{doff}

t_{don}

tr

: t_f

30

Ω

tp = 80µs

M300GB066.XLS-1:

I_F= 600 A

450 A

300 A

200 A

150 A

 $V_{GE} = -8V/+15V$

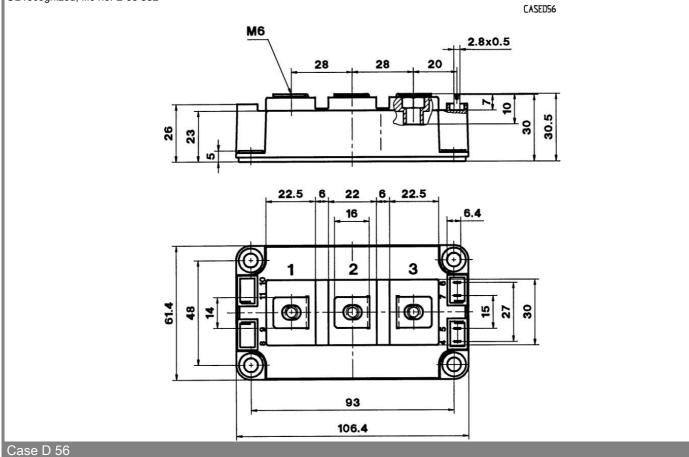
Т

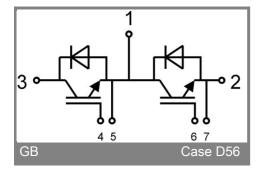
 $V_{cc} = 300V$

T_i = 150 ℃

3

V


2


R_G=

1,6 Ω

20

UL recognized, file no. E 63 532

