
F Fuji Electric 6MBP15VAA120-50

IGBT MODULE (V series) 1200V / 15A / IPM

Features

- Temperature protection provided by directly detecting the junction temperature of the IGBTs
- · Low power loss and soft switching
- · High performance and high reliability IGBT with overheating protection
- · Higher reliability because of a big decrease in number of parts in built-in control circuit

Maximum Ratings and Characteristics

● Absolute Maximum Ratings (Tc=25°C, Vcc=15V unless otherwise specified)

Items		Symbol	Min.	Max.	Units
Collector-Emitter Voltage (*1)		Vces	0	1200	V
Short Circuit Voltage		Vsc	400	800	V
	DC	lc	-	15	A
Collector Current	1ms	Icp	-	30	A
	Duty=100% (*2)	-lc	-	15	A
Collector Power Dissipation	1 device (*3)	Pc	-	122	W
Supply Voltage of Pre-Driver (*4	4)	Vcc	-0.5	20	V
Input Signal Voltage (*5)		Vin	-0.5	Vcc+0.5	V
Alarm Signal Voltage (*6)		VALM	-0.5	Vcc	V
Alarm Signal Current (*7)		IALM	-	20	mA
Junction Temperature		Tj	-	150	°C
Operating Case Temperature		Topr	-20	110	°C
Storage Temperature		Tstg	-40	125	℃
Solder Temperature (*8)		Tsol	-	260	٥C
Isolating Voltage (*9)		Viso	-	AC2500	Vrms
Screw Torque	Mounting (M4)	-	-	1.7	Nm

Note *1: V_{CES} shall be applied to the input voltage between terminal P-(U,V, W) and (U,V, W)-N. Note *2: Duty=125°C/Rth(J+c)D /(I+×VF Max.)×100

Note *3: Pc=125°C/Rth(j-c)Q

Note *3: Voc shall be applied to the input voltage between terminal No.3 and 1, 6 and 4, 9 and 7,11 and 10. Note *5: Vn shall be applied to the input voltage between terminal No.2 and 1, 5 and 4, 8 and 7,12~14 and 10.

Note *6: VALM shall be applied to the voltage between terminal No.15 and 10.

Note *7: I_{ALM} shall be applied to the input current to terminal No.15. Note *8: Immersion time 10±1sec. 1time

Note *9: Terminal to base, 50/60Hz sine wave 1min. All terminals should be connected together during the test.

● Electrical Characteristics (Tj=25°C, Vcc=15V unless otherwise specified)

Items		Symbol	Conditions		Min.	Тур.	Max.	Units
	Collector Current at off signal input	ICES	V _{CE} =1200V		-	-	1.0	mA
er	Collector-Emitter saturation voltage	V _{CE(sat)}	Ic=15A	Terminal	-	-	2.05	V
Inverter	Conector-Emilier Saturation voltage			Chip	-	1.68	-	V
<u>2</u>	Forward voltage of FWD	VF	I⊧=15A	Terminal	-	-	2.50	V
			IF-13A	Chip	-	2.10	-	V
		ton	V -600V T-1	V₀c=600V, T₁=125°C, I₀=15A		-	-	μs
с,	vitching time	toff	VDC-000V, 1j-12	25 C, IC-15A	-	-	2.1	μs
31	Switching time		V _{DC} =600V, I⊧=15	-	-	0.3	μs	
Sı	v current of P-side pre-driver (per one unit) Icop Switching Frequency= 0-15kHz		-	-	8	mA		
Sı	pply current of N-side pre-driver	Icon	Tc=-20~110°C		-	-	19	mA
In	Innut signal threshold valtage	Vinth(on)	Vin-GND	ON	1.2	1.4	1.6	V
	put signal threshold voltage	Vinth(off)	OFF	1.5	1.7	1.9	V	
0	Over Current Protection Level		T _j =125°C		23	-	-	A
0	ver Current Protection Delay time	tdoc	T _j =125°C		-	5	-	μs
Sł	nort Circuit Protection Delay time	tsc	Tj=125°C		-	2	3	μs
IG	BT Chips Over Heating Protection Temperature Level	Тјон	Surface of IGBT	Chips	150	-	-	°C
0	ver Heating Protection Hysteresis	Тјн			-	20	-	°C
Uı	nder Voltage Protection Level	Vuv			11.0	-	12.5	V
U	nder Voltage Protection Hysteresis	Vн			0.2	0.5	-	V
					1.0	2.0	2.4	ms
A	arm Signal Hold Time	talm(UV)	→ ALM-GND → T _c =-20~110°C	Vcc≧10V	2.5	4.0	4.9	ms
					5.0	8.0	11.0	ms
Re	esistance for current limit	RALM			960	1265	1570	Ω

• Thermal Characteristics (T_c = 25°C)

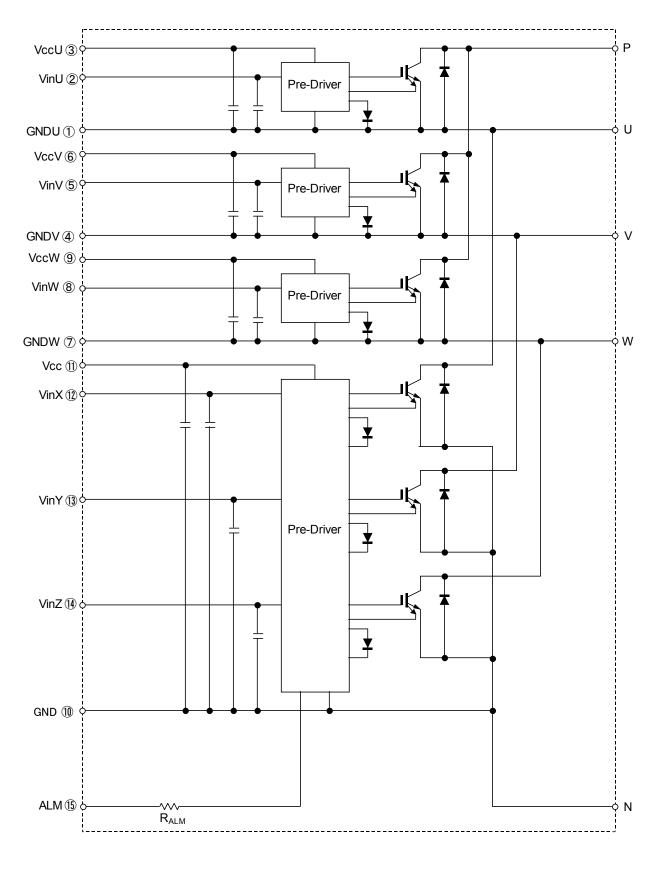
Items		Symbol	Min.	Тур.	Max.	Units	
lumetian to Case Thermal Desistance (\$10)	Inverter	IGBT	Rth(j-c)Q	-	-	1.02	°C/W
Junction to Case Thermal Resistance (*10)		FWD	Rth(j-c)D	-	-	1.51	°C/W
Case to Fin Thermal Resistance with Compound		Rth(c-f)	-	0.05	-	°C/W	

Note *10: For 1device, the measurement point of the case is just under the chip.

● Noise Immunity (V_{DC}=600V, V_{CC}=15V)

Items	Conditions	Min.	Тур.	Max.	Units
Common mode rectangular noise	Pulse width 1µs, polarity ±, 10 min. Judge : no over-current, no miss operating	±2.0	-	-	kV

Recommended Operating Conditions

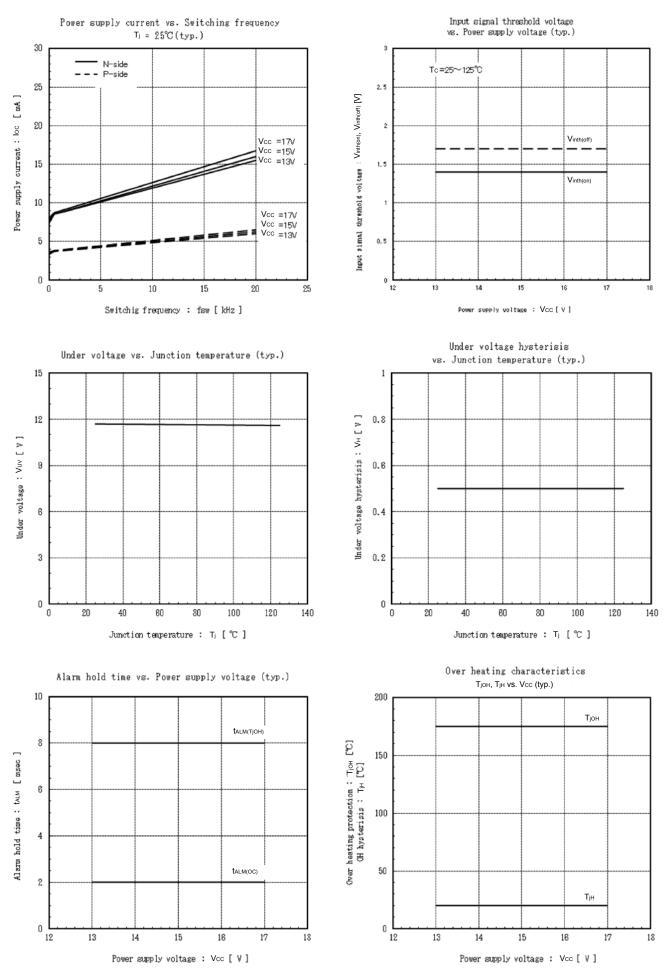

Items	Symbol	Min.	Тур.	Max.	Units
DC Bus Voltage	VDC	-	-	800	V
Power Supply Voltage of Pre-Driver	Vcc	13.5	15.0	16.5	V
Switching frequency of IPM	fsw	-	-	20	kHz
Arm shoot through blocking time for IPM's input signal	t _{dead}	1.0	-	-	μs
Screw Torque (M4)	-	1.3	-	1.7	Nm

• Weight

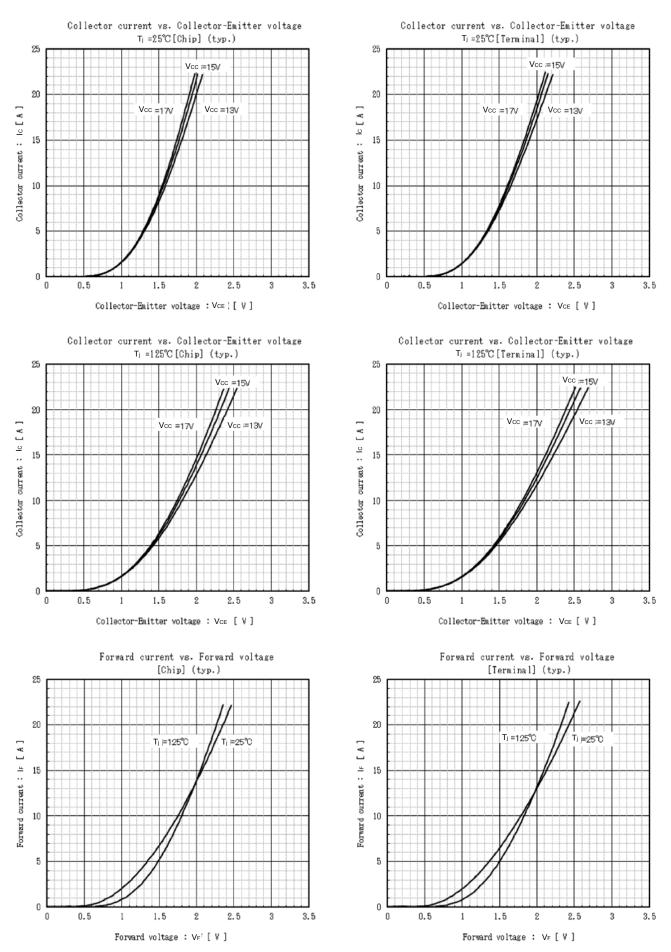
Items	Symbol	Min.	Тур.	Max.	Units
Weight	Wt	-	80	-	g

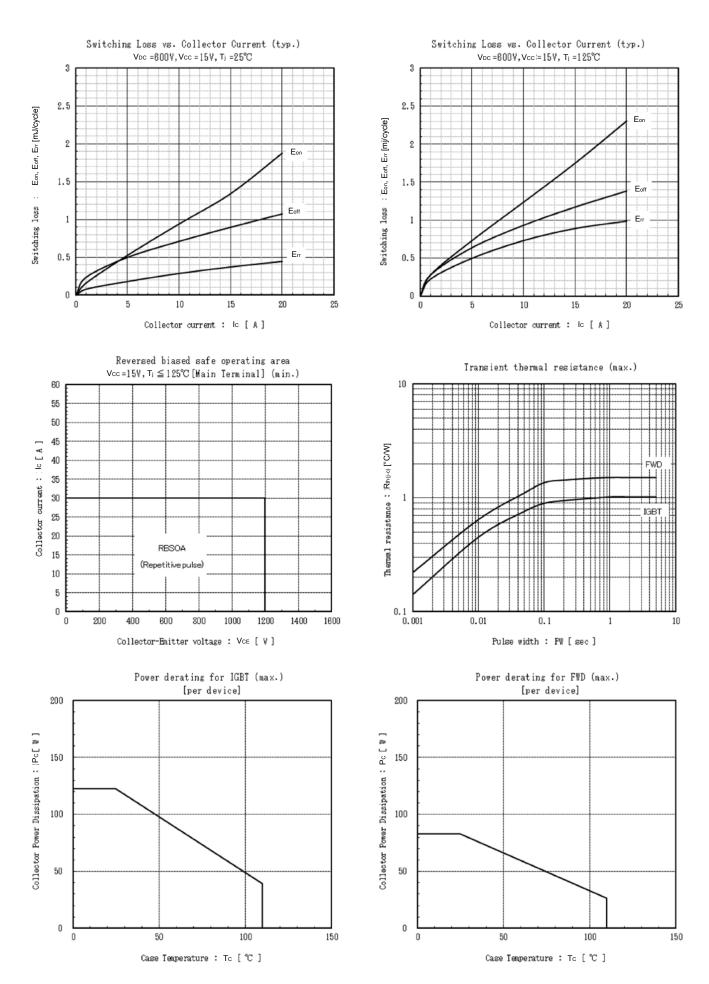
http://www.fujielectric.com/products/semiconductor/

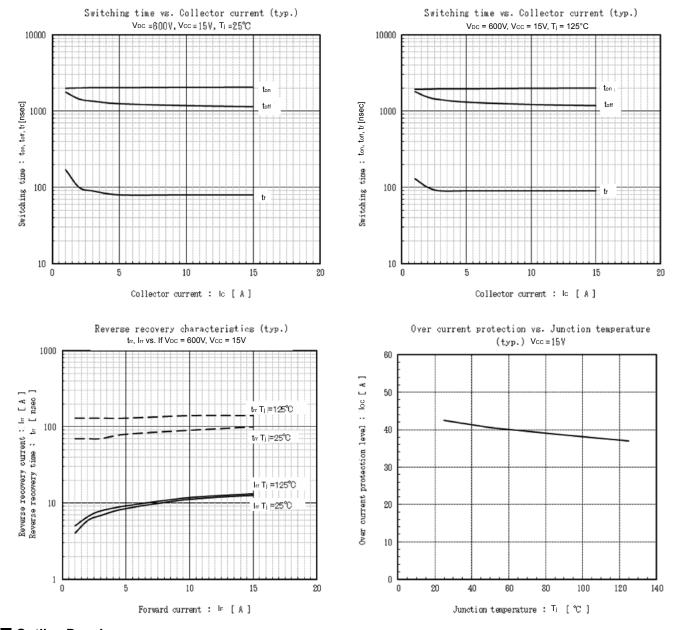
Block Diagram

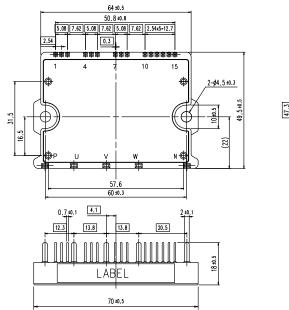


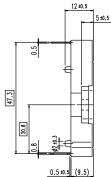
Pre-drivers include following functions


- 1. Amplifier for driver
- 2. Short circuit protection
- 3. Under voltage lockout circuit
- 4. Over current protection
- 5. IGBT chip over heating protection


http://www.fujielectric.com/products/semiconductor/


Characteristics (Representative)


Inverter



Weight: 80g(typ.)

http://www.fujielectric.com/products/semiconductor/

WARNING

- 1. This Catalog contains the product specifications, characteristics, data, materials, and structures as of March 2014. The contents are subject to change without notice for specification changes or other reasons. When using a product listed in this Catalog, be sur to obtain the latest specifications. 2. All applications described in this Catalog exemplify the use of Fuji's products for your reference only. No right or license, either express or implied, under any patent, copyright, trade secret or other intellectual property right owned by Fuji Electric Co., Ltd. is (or shall be deemed) granted. Fuji Electric Co., Ltd. makes no representation or warranty, whether express or implied, relating to the infringement or alleged infringement of other's intellectual property rights which may arise from the use of the applications described herein. 3. Although Fuji Electric Co., Ltd. is enhancing product quality and reliability, a small percentage of semiconductor products may become faulty. When using Fuji Electric semiconductor products in your equipment, you are requested to take adequate safety measures to prevent the equipment from causing a physical injury, fire, or other problem if any of the products become faulty. It is recommended to make your design failsafe, flame retardant, and free of malfunction. 4. The products introduced in this Catalog are intended for use in the following electronic and electrical equipment which has normal reliability requirements. Computers OA equipment Communications equipment (terminal devices) Measurement equipment Electrical home appliances • Personal equipment • Industrial robots etc. Machine tools Audiovisual equipment 5. If you need to use a product in this Catalog for equipment requiring higher reliability than normal, such as for the equipment listed below, it is imperative to contact Fuji Electric Co., Ltd. to obtain prior approval. When using these products for such equipment, take adequate measures such as a backup system to prevent the equipment from malfunctioning even if a Fuji's product incorporated in the equipment becomes faulty. • Transportation equipment (mounted on cars and ships) Trunk communications equipment • Traffic-signal control equipment · Gas leakage detectors with an auto-shut-off feature · Emergency equipment for responding to disasters and anti-burglary devices · Safety devices Medical equipment 6. Do not use products in this Catalog for the equipment requiring strict reliability such as the following and equivalents to strategic equipment (without limitation). Space equipment · Aeronautic equipment Nuclear control equipment Submarine repeater equipment 7. Copyright ©1996-2014 by Fuji Electric Co., Ltd. All rights reserved. No part of this Catalog may be reproduced in any form or by any means without the express permission of Fuji Electric Co., Ltd. 8. If you have any question about any portion in this Catalog, ask Fuji Electric Co., Ltd. or its sales agents before using the product.
 - Neither Fuji Electric Co., Ltd. nor its agents shall be liable for any injury caused by any use of the products not in accordance with instructions set forth herein.